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ABSTRACT 

A computational approach is presented to obtain the optimal path of the end-effector for the 10 DOF 

bipedal robot to increase its load carrying capacity for a given task from point to point. The synthesizing 

optimal trajectories problem of a robot is formulated as a problem of trajectory optimization. An 

Iterative Linear Programming method (ILP) is developed for finding a numerical solution for this 

nonlinear trajectory. This method is used for determining the maximum dynamic load carrying capacity 

of bipedal robot walking subjected to torque actuators, stability and jerk limits constraints. First, the 

Lagrangian dynamic equation should be written to be suitable for the load dynamics which together with 

kinematic equations are substantial for determining the optimal trajectory. After that, a representation 

of the state space of the dynamic equations is introduced also the linearized dynamic equations are 

needed to obtain the numerical solution of the trajectory optimization followed by formulation for the 

optimal trajectory problem with a maximum load. Finally, the method of ILP and the computational 

aspect is applied to solve the problem of trajectory synthesis and determine the dynamic load carrying 

capacity (DLCC) to the bipedal robot for each of the linear and circular path. By implementing on an 

experimental biped robot, the simulation results were validated. 
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1. Introduction1 

In this work, problem of calculating the maximum 
load carrying capacity in optimal trajectory is 

explained. Specific two end-position for the end 

effector, the matter is to synthesize the dynamic 
path of the end effector, thus allowing carrying the 

maximum load between these two end-position. 

By using a state representation for dynamic 
equations, at first, the formulation of state space 

related to biped robot dynamic equations is 

presented, followed by the thorough problem 

formulation of the track optimization problem. In 
other words, the matter of dynamic trajectories 

synthesizing of robot when carrying the maximum 

load can be formulated as a problem of trajectory 
optimization by the state representation of the 

equations of motion. The method of Iterative 

Linear Programming (ILP) is developed to find 
solutions for the problem of nonlinear trajectory 
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optimization. As a general concept, this method 

coordination point to point robot movements, 
which are load optimal with cycle time constraint. 

The formulation takes into account both joint 

variable and actuator constraints. ILP technique 

depends on the “Method of Approximate 
Programming (MAP)” which is essentially the 

revision of the class of general cutting plane 

methods. The basic concept behind the method of 
cutting plane is straightforward. Reality the 

problem of nonlinear programming (NLP), the 

algorithms include repeated updating of the 
solution of the linear programming (LP) problem 

which is found by the linearization of the initial 

NLP problem about the prior solution of the LP. If 

the solution converges to a predefined little 
toleration, the iterations will be stopped. The 

method of ILP offered in general, is suitable to 

employ and can handle a set of constraints. The 
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process of linearization and its convergence with 

the optimal path are complicated tasks when the 

systems have a large degree of freedom. That 
means even when the method converges with the 

solution, cannot warranty that it is the right 

optimal solution to the problem. In reality, it may 

not even be an optimal solution. Often procedure 
to solve the difficulty is to work the program for a 

set of different elementary guesses. When the 

numerical approach converges with the same 
trajectory and control for a variety of elementary 

guesses, this reinforces that there is some 

emphasis, that a truly optimal solution to the main 
problem has been found [1, 2]. 

[3]  presents a formulation and numerical solution 

to the problem of determining a point-to-point 

path for flexible manipulators with a maximum 
load. Two constraints were imposed actuator 

torque and the deformation on the end effector to 

find the maximum allowable load. For calculating 
the maximum load of the elastic robot in the 

optimal path subject to the constraints above, an 

ILP method is used, whilst a computational 

approach for the case of multiple-link with 
arbitrary paths is introduced in detail. A 

computational procedure for finding optimal path 

of flexible joints and links mobile manipulators to 
rise their ability to carry the load for a given point-

to-point task were developed by [4]. In this study, 

similar to classical rigid manipulator equations, 
the dynamic equations are organized in a closed 

form. After that, the problem of DLCC on flexible 

mobile manipulators is converted into the problem 

of a trajectory optimization. Formulation of 
dynamic equations at first in the state space form 

then linearized. After that, the ILP method is 

developed to calculate the DLCC of these types of 
manipulators. Also, the study included a 

simulation using two numerical examples with a 

discussed the results. The main purpose of the 
study carried out by [5]   . is to find the DLCC for 

the flexible link manipulators in point to-point 

motion and was formulated as an optimal control 

problem. The finite element method was utilized 
for modeling the dynamic equations of motion and 

deriving these equations. The work appointed an 

indirect solution for optimum control of the 
planning of system motion. The implementation of 

Pontryagin s̓ minimum principle to problem 

resulted in the standard two-point boundary value 

problem (TPBVP), found in a numerical way. 
Then the formulation was developed to obtain the 

maximum load and optimal trajectory. The 

proposed method has the major feature that several 
optimal paths can be found beside different 

maximum payloads and many characteristics. 

Thus, the specialist  can choose the proper 

trajectory between the many optimal trajectories. 

To investigate the effectiveness of the method, a 
simulation on a two-link flexible manipulator was 

introduced.  

[6] studied a general formulation to determine the 

DLCC of a mechanical manipulator has elastic 
links. Optimal control method was applied to form 

the Hamiltonian function, through selecting 

suitable objective function, and pick the needful 
conditions from the Pontryagin minimum 

principle PMP. This study aims to find the 

maximum load that a manipulator can carry with 
optimal trajectory, the simulation and 

experimental data confirm the trustiness of the 

technique in calculating the DLCC for two links 

flexible manipulator. The objective of the work 
carried out by [7] was to calculate the dynamic 

load carrying capacity of a manipulator with a 

specific trajectory. The method of a closed-loop 
optimal control was used. The solution methods 

depend on indirect methods for designing optimal 

controllers in a closed-loop form commonly, while 

the presented method is a mixing of direct as well 
as indirect methods. The theorem of the optimum 

control is offered from solve the Hamilton Jacobi 

Bellman (HJB) partial differential equation. Also, 
the equation is difficult to solve properly for 

complex dynamics, thus can be solved 

numerically by the Galerkin technique together 
with the algorithm of nonlinear optimization. By 

using a fixed manipulator, the simulation was 

carried out. The results illustrated the 

effectiveness of the method for tracking the 
predetermined trajectory and calculating DLCC. 

By using a two-link manipulator an experimental 

test has been achieved. The major innovation of 
the study by [8] . is to calculate the DLCC of a 

flexible joint manipulator using the approach of 

nonlinear optimal control. The presented approach 
was compared with closed-loop nonlinear 

methods. The method is compared with robust 

sliding mode control (SMC) and feedback 

linearization (FL) methods to introduce a better 
behavior of the approach of the nonlinear optimal 

control. From the Hamilton Jacobi Bellman (HJB) 

equation an optimal controller was designed. By 
using the FL method, angular position, velocity, 

acceleration and jerk of links are new states to 

linearize the dynamic equations. In the situation of 

SMC, the equations of motion for the manipulator 
are replaced with the standard form. Finally, the 

Slotine method can be used to design the sliding 

mode controller. In this study, both simulation and 
experimental tests were performed to validate the 

offered method. [9] used the method of optimal 
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sliding mode control which is extracted from the 

state-dependent Riccati equation (SDRE) and 

sliding mode control (SMC) technique. The 
proposed technique is utilized in a type of 

nonlinear closed-loop system. The percentage of 

load distribution between every manipulator can 
be derived depending on the cost function, to raise 

the value DLCC, and by comparison for SDRE 

way, DLCC increased about 15% when applying 
the method of optimum sliding mode control. The 

problem in this method is the retard, for real-time 

performance, so power series approximation PSA 

is utilized for achievement. A new method is 
presented by [10].  to solve the problem of 

optimum control and also to find the DLCC for 

mobile and fixed manipulators in point-to-point 
movement. The new method used includes a direct 

and indirect method. The law of optimum control 

with the form of a state feedback, the systems of 
nonlinear dynamics are specified by the solution 

to the equation of the nonlinear Hamilton Jacobi 

Bellman (HJB). The Galerkin way and nonlinear 

optimization algorithm are utilized to solve the 
equation in a numerical way. The second 

innovation is the planning of the optimal path, 

which is carried out in parallel with the method of 
controller design. A new algorithm is presented to 

determine the DLCC for manipulators and the 

linked optimal path using the presented technique. 

Simulation and experimental tests were performed 
to validate these proposed methods. This study 

aims to calculate DLCC for a biped robot for 

optimal trajectory within torque of DC motor, 
stability and jerk limits constraints. After the 

DLCC for a specific path was obtained according 

to the above constraints in different ways as used 

in works [11, 12], then can be introduced the state 

space representation of dynamic equations. And 
the nonlinear state space dynamic equations for 

biped robot are linearized. Then the synthesis 

problem of dynamic trajectories of robot with 
maximum load carrying capacities can be 

formulated as a problem of path optimization by 

the state space formulation of the dynamic 
equations. Finally, the ILP method and the 

computational technique to compute the optimum 

path are developed and validated with 

experimental results. It should be noted that we 
have chosen to publish this study in the IJIEPR 

due to presenting new ideas and results of modern 

research, where this study provides a 
computational approach to find the optimal path 

for the movement of the end-effector for the 10 

DOF bipedal robot, as this type of robots has a 
wide scope of applications and uses in various 

fields of industry and modern production systems, 

which this journal is concerned with providing 

new research that have a close relationship in these 
vital areas. 

 

2. Modeling  
2.1. State space representation for dynamic 

equation of a biped robot 
When the arm of the biped robot carries the load, 

thus the load can be supposed as available. This 

load modeled as a point mass ( 𝑚𝑙),  thus the 

general Lagrangian dynamic equation for n degree 

of freedom bipedal robot:  

 

{[M (q, 𝑚𝑙)][ 𝑞̈ ]+[ C(q, q ̇, 𝑚𝑙)][ q ̇]+[ G(q,  𝑚𝑙)]}=[ D(q,  𝑚𝑙)][τ]                                                              (1)  

τ = [ D(q,𝑚𝑙)]
−1 {[M (q, 𝑚𝑙)] q ̈ + [C (q, q ̇,  𝑚𝑙)] q ̇  + [G (q, 𝑚𝑙)]}                                                            (2)   

 τ = [

τ1

τ2

⋮
τm

]                                                                                                                                                         (3) 

 

Where τ is an (n × 1) the actuator torques vector. 

M (q,𝑚𝑙) is an (n×n) matrix of mass, the matrix is 

a function of the joint position (q), the mass and 

inertia of links  and the mass of the load (𝑚𝑙). In 

general, the form can be defined as: 
 

M (q, 𝑚𝑙) = [

M1(q1, 𝑚𝑙) 0n1×n2 ⋯ 0n1×nm

0n2×n1 M2(q2, 𝑚𝑙) … 0n2×nm

⋮ ⋮ ⋱ ⋮
0nm×n1 0nm×n2 ⋯ Mm(qm,𝑚𝑙)

]                                                                       (4) 

 

C (q,q̇, 𝑚𝑙) is an (n × 1) vector, including the centripetal as well as Coriolis terms and the mass of load (𝑚𝑙). 
In the general form can be defined as: 
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C (q,q ̇, 𝑚𝑙) = [

C1(q1 , q1̇, 𝑚𝑙) 0n1×n2 ⋯ 0n1×nm

0n2×n1 C2(q2 , q2̇ , 𝑚𝑙) … 0n2×nm

⋮ ⋮ ⋱ ⋮
0nm×n1 0nm×n2 ⋯ Cm(qm, qṁ, 𝑚𝑙)

]                                                     (5)  

 

G (q, 𝑚𝑙): is the gravity influence vector with mass of the load (𝑚𝑙). Where:  

 

G (q, 𝑚𝑙) =[

G1(q1 , 𝑚𝑙)
G2(q2 , 𝑚𝑙)

⋮
Gm(qm, 𝑚𝑙)

]                                                                                                                              (6)  

 

D (q, 𝑚𝑙): represents the matrix of torque distribution containing mass of the load(𝑚𝑙), in the general form 

we can get: 
 

D (q, 𝑚𝑙) = [

D1(q1 , 𝑚𝑙) 0n1×n2 ⋯ 0n1×nm

0n2×n1 D2(q2, 𝑚𝑙) … 0n2×nm

⋮ ⋮ ⋱ ⋮
0nm×n1 0nm×n2 ⋯ Dm(qm , 𝑚𝑙)

]                                                                          (7) 

 

q, q ̇ , q̈ are (n×1) vectors of position, velocity, and acceleration for the joints. So we can express as follows:  

𝑞̈= [M (q,𝑚𝑙)]
−1  [(D (q,  𝑚𝑙 ))τ - C (q,q ̇, 𝑚𝑙) [ 𝑞̇ ] - G (q, 𝑚𝑙)] 

 

  = f (q,  q ̇ ,τ, 𝑚𝑙)                                                                                                                                            (8) 

The state vectors is  : 

X = [𝑥1, 𝑥2] 𝑇                                                                                                                                                  (9) 
 

Where: 

 

𝑥1=[q1, q2,… q𝑛] 𝑇                                                                                                                                      (10) 
𝑥2=[ q1̇, q2̇,…qṅ] 𝑇                                                                                                                                      (11)  
 

The state space representation of the dynamic Eq. (1) is represented as: 
 

X ̇ = | 
𝑥1̇

𝑥2̇
 | = | 

𝑥2

𝑓(𝑋,𝜏, 𝑚𝑙 )  
 |                                                                                                                                  (12)    

 

Where: X is a (2n×1) vector and(𝑋, 𝜏,  𝑚𝑙  ): (n) non-linear functions. 

 

2.2. Linearized of the state space 

representation for dynamic equation of a 

biped robot  
In this step, the form of the state space dynamic 
equation above, can be rewriting so to find the 

solution for the problem of nonlinear constrained 

trajectory optimization. This procedure is one of 

the requirements for describing the dynamic 

motion equation in accordance with the 
parameters of the iterative method to obtain the 

optimal path. In the other word, state space 

dynamic equations are linearized: 

 
[X(𝑗+1)−𝑋(𝑗)]

𝑝
  = f (X (j), τ(j),  𝑚𝑙)                                                                                                                 (13)  

 

Where p =  
(𝑡𝑓𝑖𝑛𝑎𝑙−𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 )

m
, (m) represents the 

overall number of set points utilized to discretize 

the path of the end- effector. When Equation (13) 

substituting into Equation (12), this give: 

 

F (X (j), τ(j), 𝑚𝑙) = [
(𝑥2 )   

( f (X (j),𝜏 (j), 𝑚𝑙) )
]                                                                                                          (14)  

 

The nonlinear function above in Equation (14) should be expanded in the (Taylor series form) 
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about the trajectory  of( k𝑡ℎ). With the need to neglect the terms of higher order, can get: 
 

𝑓𝑘+1(j) =  𝑓𝑘 (j) + 
𝜕𝑓

𝜕𝑥1
 (j) (𝑥1

𝑘+1(j) − 𝑥1
𝑘 (j)) + 

𝜕𝑓

𝜕𝑥2
(j) (𝑥2

𝑘+1(j) − 𝑥2
𝑘 (j)) + 

𝜕𝑓

𝜕𝜏
 (j) (𝜏𝑘+1(j) − 𝜏𝑘(j)) + 

𝜕𝑓

𝜕 𝑚𝑙
 (j) 

(𝑚𝑙
𝑘+1 − 𝑚𝑙

𝑘)                                                                                                                                               (15) 
 

Now, with more compactly, Equation (15) can be rewritten as: 
 

𝑓𝑘+1 (j) = 
𝜕𝑓

𝜕𝑥1
(j) 𝑥1

𝑘+1(j) + 
𝜕𝑓

𝜕𝑥2
 (j) 𝑥2

𝑘+1(j) + 
𝜕𝑓

𝜕𝜏
(j) 𝜏𝑘+1(j) + 

𝜕𝑓

𝜕 𝑚𝑙
  (j) 𝑚𝑙

𝑘+1+𝑋𝐾(𝑗)                                     (16) 

 

And: 
 

𝑋𝐾(𝑗)   = 𝑓𝑘(j) − 
𝜕𝑓

𝜕𝑥1
(j) 𝑥1

𝑘(j) −
𝜕𝑓

𝜕𝑥2
(j) 𝑥2

𝑘  (j) − 
𝜕𝑓

𝜕𝜏
(j) 𝜏𝑘(j) − 

𝜕𝑓

𝜕 𝑚𝑙
 (j) 𝑚𝑙

𝑘                                                   (17)  

 

The superscript (k + 1) can be neglected for the sake of simplicity, substituting Eq. (16) into Eq. (13): 
 

𝑥2 (j+1) = [
𝜕𝑓

𝜕𝑥1
 (j)] 𝑥1 (j) +[ 𝑝

𝜕𝑓

𝜕𝑥2
 (j) +I] 𝑥2 (j)+𝑝 [

𝜕𝑓 

𝜕𝜏
 (j)] τ(j) +p [

𝜕𝑓

𝜕 𝑚𝑙
 (j) ]𝑚𝑙+𝑝𝑋𝐾(𝑗)                              (18) 

 

And 
 

𝑥1 (j+1) =  𝑥1(j) +p 𝑥2(j)                                                                                                                              (19) 
 

Equations (17) and (18) will be rewritten in the form of a matrix: 
 

X (j+1) = [𝐸𝑥]j X (j) + [𝐸𝜏]j τ (j) +[𝐸𝑚]j  𝑚𝑙+𝐸j                                                                                         (20) 
 

All the matrices [𝐸𝑥]j, [𝐸𝜏]j,  [𝐸𝑚]j and 𝐸j as below:  
 

 [Ex]j = [
[𝐼]  𝑝[𝐼]

𝜕𝑓

𝜕𝑥1
(𝑗)𝑝]

𝜕𝑓

𝜕𝑥2
 (𝑗)𝑝 + 𝐼]

]            (2n×2n matrix)                                                                 (21) 

[Eτ]j =[
[0]

𝜕𝑓 

𝜕𝜏
(𝑗)𝑝]

]                                                (2n×n matrix)                                                                    (22) 

[E𝑚]j=[
0

𝜕𝑓

𝜕 𝑚𝑙
 (𝑗)𝑝],   Ej = [

0
𝑋𝐾(𝑗) 𝑝

]                      (2n×1vector)                                                                (23)  

 

[I]: (n×n) identity matrix, [0] : (n×n) null matrix, 

and 0 : (n×1) null vector. The procedures to derive 

the matrices [𝐸𝑥]j ,  [𝐸𝜏]j , [𝐸𝑚]j  and 𝐸j  will be 

explained in the Appendix (A). X (j+1) introduced 

as a linear combination of ( 𝑚𝑙) and τ (j). 

Equation (20) will be: 

 

X (j+1) = 𝑋𝑝 (j +1) +𝜆j  𝑚𝑙 +∑ [𝜇ji
𝑗
𝑖=1 ] τ (j)       j=1, 2,.., m                                                                        (24)  

 

It can be considered that Eq. (24) is the linearized dynamic equation, where: 
 

𝑋𝑝(𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙) = 𝑋𝑝(1)                                                                                                                                (25) 

𝑋𝑝 (j+1) = [E𝑥]j 𝑋𝑝(j) + 𝐸j  , 𝜆1= [E𝑚]1                                                                                                      (26) 

[𝜆j]= [𝐸𝑥]j𝜆j−1 + [Em]j                                                                                                                                (27) 

[𝜇ji] = [𝐸𝑥]j [𝜇j−1,i]    (i< j )  , [𝜇ji] =[𝐸𝜏]j (i  =j)                                                                                         (28) 
 

2.3. Formulation of the problem for 

optimal trajectory with maximum load 

carried by a biped robot  
The synthesizing dynamic motion trajectories 

problem with maximum dynamic load is possible 
formulated as the trajectory optimization problem 

via the formulation of the state space of dynamic 

equations. From the point to point movement with 

constraints of joint variable and actuator during 

the path, the formulation written for maximize the 

(𝑚𝑙𝑜𝑎𝑑), whilst ensuring that the Equation (12) is 

satisfied, the torques of joints are bounded by: 
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𝜏𝑚𝑎𝑥(X (t)) ≥  𝜏 (t) ;   𝜏𝑚𝑖𝑛 (X (t) ) ≤ 𝜏 (t)      (29) 

 

𝜏𝑚𝑎𝑥  (X(t)) and 𝜏𝑚𝑖𝑛 (X (t)) are arbitrary known 

functions of the joint angles and velocities. As 

well, the initial and final states should be fulfilled, 

therefore the requirements below in Equation (30) 
should be satisfied: 

X1(𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙) = q (𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙) = X1)𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , with X2(𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙) = 0  

X1(𝑡𝑓𝑖𝑛𝑎𝑙) = q (𝑡𝑓𝑖𝑛𝑎𝑙) =  X1)final , with  X2 (𝑡𝑓𝑖𝑛𝑎𝑙) = 0                                                                              (30) 

 
The joint displacements should be bounded during movement as follow: 

 

(𝑋1) ≤ 𝑋1
+  and  (𝑋1)≥ 𝑋1

−                                                                                                                          (31) 

 

Where 𝑋1
+  and  𝑋1

−  : upper and lower bounds of 

the joint variables, respectively. Also another 

constraint is the upper bound of payload (𝑚𝑙): is 

the least value of the static load carrying capacity 

at the two end positions of path. It must be taken 
into account that the optimal trajectory of the load 

must be subject to the constraints of stability and 

limitations of a jerk. The stability criterion is given 
by the following equation: 

 

𝐿𝑚𝑖𝑛≤ 𝑋𝑍𝑀𝑃  ≤ 𝐿𝑚𝑎𝑥                                                                                                                                     (32) 
 

Where, 𝐿𝑚𝑎𝑥( length from the ankle to the toe   ( and 

𝐿𝑚𝑖𝑛   ) length from the ankle to the heel) are 

determined by the size of the designed robot’s 

foot. While, the bounded jerk may be represented 

by the followig equation: 
 

|𝜃(𝑡)|≤ max(𝜃)                                                                                                                                              (33) 

 

The above two constraints are verified after 

determining the optimal trajectory. If they are not 
achieved, this trajectory is canceled and another 

trajectory is generated that fulfills all the imposed 

restrictions. Thus the path between the two points 
be implemented without any violation of the 

imposed constraints. 

2.4. Solve the trajectory synthesis problem 

of a biped robot. 
To solve the problem of trajectory synthesis, the 

ILP method is used. Taking into account the 
following condition [2, 3]: 

 

{ 𝑚𝑙 ≤ 𝑚𝑙
+ }                                                                                                                                              (34) 

 

This condition above is very important as it sets 

the highest value of the dynamic load that the 
robot can raise within the specified path. This 

value will then be adopted as an initial value to 

proceed with the iterative method to calculate the 

greatest dynamic load in the optimal path. The 
actuator constraints are described as: 

 

𝜏(j) ≤ 𝜏𝑚𝑎𝑥  (x (j) )   and  𝜏(j) ≥ 𝜏𝑚𝑖𝑛 (x(j) )         ( j=1, 2, …, m  )                                                           (35) 
 

Using the characteristics of typical torque-speed of 

DC motors, where this leads to determining the 

maximum allowable torque depending on these 

relationships: 
 

k1– (k2) 𝑥2(j) should be equivalent to                                  𝜏(j) ≤ 𝜏𝑚𝑎𝑥  (x (j))  

k1 – (k2) 𝑥2(j) should be equivalent to                                 𝜏(j) ≥ 𝜏𝑚𝑖𝑛  (x (j))                                         (36)  

 

Where k1 and  k2 : (n × 1) constant vector and 

(n × n) diagonal constant matrix, respectively, 

determined by the equivalent actuator constants. 
Now these constraints can be written as: 

 

  𝜏 ≤  𝑏+   = [

 k1 – [k2] x2(1)
 k1 – [k2] x2(2)

… . .
 k1– [k2] x2(m)

]                      (37)  
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  −𝜏 ≤ −𝑏−
 = [

− k1 – [k2] x2(1)
− k1 – [k2] x2(2)

… . .
− k1 – [k2] x2(m)

]               (38) 

Where 𝑏+
 : the upper bound vector of joint 

actuator torques and 𝑏− : the lower bound vector 

of joint actuator torques. In other words, 𝑏+
 and 

𝑏− are functions of the  positions and velocities of 

joints. τ = [τ (1), τ (2), …, τ (m)] : (n x m) vector 
including the control pattern set point (1 to m). The 

problem is converted to a linear programming 

problem if the change of variable as: 

 

 𝜏𝑓𝑖𝑛𝑎𝑙= 𝑏+ − 𝜏      𝜏𝑓𝑖𝑛𝑎𝑙  ≥ 0   and it is possible too     𝜏= 𝑏+ − 𝜏𝑓𝑖𝑛𝑎𝑙                                                         (39) 

 

Also we can get the following Eq. (40) by substituting Eq. (39) into Eq. (38):  
       

𝜏𝑓𝑖𝑛𝑎𝑙  ≤ 𝑏+ − 𝑏−                                                                                                                                (40) 

 

By using Equation (24), can be written the constraints of joint variable as: 

 

𝑥1
− - 𝑥1𝑝 (j+1) ≤ 𝜆1j 𝑚𝑙 + ∑  [𝜇1ji

𝑗
𝑖=1 ] τ (i) ≤ 𝑥1

+ - 𝑥1𝑝(j+1)          (j=1, ..., m)                                            (41) 

 

The upper vectors of 𝜆𝑗 and 𝑋𝑝(j+1) are 𝜆1j, 𝑥1𝑝 (j+1) respectively. 𝜇1𝑗𝑖 : upper (n x n) sub matrix of 𝜇ji. Eq. 

(41) described in the form:  [Yj] = [ μ1j1, μ1j2, μ1jj,0,….,0] 

 

𝜆1j 𝑚𝑙- [Yj] 𝜏𝑓𝑖𝑛𝑎𝑙 ≤ [𝑥1
+ - 𝑥1𝑝(j+1)] - [Yj] 𝑏+      (j=1,2,…, m)                                                                (42) 

−𝜆1j 𝑚𝑙+ [Yj] 𝜏𝑓𝑖𝑛𝑎𝑙 ≤ [𝑥1𝑝(j+1)]- 𝑥1
−] + [Yj] 𝑏+        (j=1,2,…, m )                                                        (43)  

 

Where [Yj]: (n × nm) matrix. By Eq. (24) the final state X (m+1) be found: 

 

X (m+1) = 𝑋𝑝(m+1) + 𝜆𝑚𝑚𝑙+∑ [𝜇𝑚i
𝑚
𝑖=1 ] τ (i) 

               =  𝑋𝑝(m+1) + [δ] 𝜏𝑚= X (𝑡𝑓𝑖𝑛𝑎𝑙)                                                                                                   (44) 

 

Where [δ] = [𝜇𝑚1 , 𝜇𝑚2 , …,   𝜇𝑚𝑚]   
Thus, all the constraints can be combined and writing in the form of a matrix as: 

 

[
 
 
 
 
 

1 0 0
0 1 0
𝜆1j −[𝑌j] 0

−𝜆1𝑗 [𝑌j] 0

λ𝑚 −δ −1
−𝜆𝑚 δ −1]

 
 
 
 
 

   [

 
𝑚𝑙

𝜏𝑓𝑖𝑛𝑎𝑙

X

]  ≤ 

[
 
 
 
 
 
 

𝑚𝑚𝑎𝑥

𝑏+ − 𝑏−

[𝑥1
+  − 𝑥1𝑝(𝑗 + 1)]  − [𝑌j] 𝑏+

[𝑥1𝑝(𝑗 + 1) − 𝑥1
−]  + [𝑌j] 𝑏+

𝑋 (𝑡𝑓𝑖𝑛𝑎𝑙) −  𝑋𝑝(𝑚 + 1) − [δ]𝑏+

 𝑋𝑝(𝑚 + 1) − 𝑋 (𝑡𝑓𝑖𝑛𝑎𝑙) + [δ]𝑏+]
 
 
 
 
 
 

                                                       (45)  

 

Each of the constraints and topical functions are 
linear, so it is a linear programming problem that 

can increase the dynamic load carrying capacity, 

decidedly an important requirement.   
 

2.5. Method of the computing 
The computing technique of the optimum path 
problem is formulated in details in Fig. 1. This 

computational technique includes guessing the 

elementary control and state variable path. From 
discretizing the initially specified trajectory into 

(m) points. 𝑚𝑙𝑜𝑎𝑑  was obtained to be the 

maximum load and can be carried in the 
elementary path with not skip any of the 

constraints. We must point out that this 

formulation presented in the current study is 
unique because it took into consideration 

additional constraints in calculating the maximum 

dynamic load, and these constraints are (the 
stability constraint and the jerk limits) compared 

to the studies [1-3] that based on actuators torque 

as major constraints imposed in calculating the 

dynamic load carrying capacity. 
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Fig. 1. Flow chart of computing procedure for bipedal robot 

 

3. Simulation 
At this stage of the study, the maximum DLCC 

will be found within the optimal trajectory for the 

end-effector. The synthesizing point to point 

dynamic motions problem with optimal load 
carrying capacities is explained in details. An ILP 

approach is introduced to obtain numerical 

solutions for the problem of nonlinear trajectory 
optimization. By using ILP method, the optimal 

trajectory and maximum DLCC they will be 

found. The computational technique related to the 
trajectory optimization problem formulated in 

terms of the ILP problem is introduced as: 

1. Beginning the path, in this stage guess state 
variable path and an initial control. At the first 

the initial path discretize via “m” set points, 

after that calculation  τ(j),  𝑥  (j), 𝑚𝑙  for j= 1, 

…, m, also calculation of the upper bound for 

the load  𝑚𝑙
+ . Then we check  if  𝑚𝑙

+ ≤ 0, 

then: stop (this indicates  the trajectory is 

impenetrable and the biped robot cannot carry 
the load into the two end-positions), else: 

select a possible  τ(j),  and put the iteration 

counter k=1. 

2. Computing the coefficients [𝐸𝑥]j , [𝐸𝜏]j 

,  [𝐸𝑚]j  ,  𝐸j  of the linearized state Equation 

(20) and repeatedly compute [𝜇ji], [λj], and 𝑥𝑝 

(j+1)             { j=1, 2,…,m, i=1, 2,…m}. 

3. Using the Equations (42) to (44) to calculation 

the constraints then conjure a linear 

programming subroutine. After that, we check 
if no favorable solution for the LP is available, 

setting k = k+1 and going back to the second 

step. Else: solving the maximum load 

( 𝑚𝑙 )  𝑘+1.  and actuators torque (𝜏 )𝑘+1 
corresponding to the new trajectory from 

Equation (39). 

4. Updating the optimal path (X)𝑘+1(j)       {j=1, 

2, …, m+1}, using Equation (20). 

5. Checking the end conditions, including the 

stabilization and jerk conditions. If it satisfies, 

after that obtaining the optimal path and 

corresponding 𝑚𝑙, afterward stopping. 

Based on the above, all necessary calculations are 
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performed to obtain the optimal DLCC with 

optimal path. Where the simulation was performed 

in two straight line and circular paths, on the other 
hand, actuators constraint, stability criteria, and 

jerk limitations were imposed as it is in finding 

dynamic load carrying capacity in given 
trajectory. The ILP method can be classified as an 

iterative and approximate numerical method. 

Undoubtedly, this numerical method allows the 
user to obtain results with acceptable accuracy and 

within a scientific method that enjoys sobriety, 

although it is not devoid of complexity during 

implementation.  
 

4. Experimental Setup 
It is very important to verify the simulation results 

to see how effective the presented method for 

calculating DLCC for optimal trajectory. In the 

current study the suggested method has been 
applied to the 10 DOF biped robot walking, [3 

DOF for each leg, 2 DOF for each arm and 1 DOF 

for spinal region (head and neck)], which is 
illustrated in Fig. 2. The parameters of robot 

shown in the Table 1.  

 

 
Fig. 2. a) 10 DOF Bipedal Robot. b) The schematic of robot 

 

Tab. 1. The parameters of the bipedal robot 
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The following procedure was used to carry out the 

experimental work: 

• Starting the Lobot servo control software 

with the servo controller of the bipedal 
robot, then we make sure that all options are 

working  and fully activated and viewing 

through the interface of the program on the 

computer. To ensure valid results, the parts 
of the bipedal robot are calibrated, also 

checking all the robot components of the 

external structure, then servomotors, 
sensors and the rest of the auxiliary parts. 

• Angular positions and velocities can be set 

and adjusted by servomotor slider and 

deviation of the servo which is appears 
clearly on the program interface. All the 

values of the angular positions and angular 

velocities of the end effector of the bipedal 

robot when it moves in the optimal 
trajectory that was generated from the 

proposed iterative attempts by using the ILP 

method can be used in order to program and 
move the arm within the optimal path the of 

the robot experimentally. In addition, 

auxiliary measuring devices were also used 
to verify the correctness of the obtained 

values of positions, velocities.  

• At this stage, the bipedal robot is allowed to 

move forward within the path specified for 

it, while the command is given to the (arm 
or end-effector) of the bipedal robot to move 

within the optimal path that was generated 

through the ILP method, to carry out the 
path from the first point to the final point of 

the load. Taking into account the test 

conditions and not exceeding the constraints 

imposed. Where the values of the angular 
positions and velocities are checked, also 

the angular acceleration along the period of 

the load path, using auxiliary devices and 
equipment, and then recording all the 

readings to converge with the simulation 

results. On the other hand, the calculations 
of torques for joints are closely related to the 

angular velocities values recorded during 

the test. Thus, we obtain a complete estimate 

of the maximum dynamic load that the robot 
can carry between two known points within 

the optimal trajectory. The experimental test 

of the bipedal robot is illustrated in Fig.3. 

• The above steps are repeated for two linear 
and circular paths. In the current study, a 

comparison is made between the two 

highest load values obtained from these two 

paths. The method of verifying the results of 

the simulation gives us complete reliability 
of the results. This is on the one hand. On 

the other hand, a simulation and an 

experimental test within two different paths, 

indicate to a distinct procedure that 
enhances the study and gives an impression 

on all test particles. It should be noted that 

the test is accompanied by many effects on 
the parts of the robot, particularly the joints, 

as a result of the dynamic motion. The 

monitoring of the test is important during 
the implementation of the trajectory and to 

ensure that the load reaches the final point 

without any violation of the imposed 

constraints. In the stages of the experimental 
tests that were carried out within this study, 

there is a lot of keenness to ensure that the 

motion of the joints is carried out accurately 
within the specified velocities and 

acceleration values, and when any change 

occurs in the angular positions, the test is 

repeated, and the error is identified and 
corrected. It is very expected that a sudden 

change in the angular positions will occur, 

which will lead to changes in the velocities 
values, and thus a change in the torques of 

the joints directly, and this causes confusion 

in the work of the actuators of joints, and 
inevitably leads to instability or unbalance 

for the entire robot. The above-mentioned 

should be taken into account, especially in 

the single support stage, as well as the 
double support for the bipedal walking 

robot. In addition, maintaining the path of 

the end effector with the load ensuring that 
it does not deviate from the trajectory. 

• Finally, the data obtained during the test are 

compiled after fulfilling all the necessary 

requirements to find the DLCC within the 
optimal trajectory to verify the simulation 

results of the numerical analysis approach 

used in the current study. Where it is 

possible to view all the data simultaneously 
through the interface of the operating 

program of the robot in an updated and 

continuous manner. In addition to the 
angular positions of all joints, optimal 

control over them, and exporting all data to 

a personal computer in order to schedule it 

and employ it to the MATLAB. 
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Fig. 3. The experimental test of the bipedal robot a. The load at the beginning of the path b. 

The load at the middle of the path c. The load at the end of the path 

 

5. Comparison Between Simulation and 

Experimental Results 
Two tests were carried out to find the maximum 
load for the optimal path of end effector of the 

bipedal robot with 10 DOF. The first test involves 

moving the end effector of biped robot in the 
straight path. The start position of the end effector 

is (0.23m, 0.345m) while the final position at time 

(t) =1sec is (1m, 1m). The second test includes the 

movement of the end effector in a circular path as 
well at time (t) = 1 sec. Where the circle centered 

at (x = 0.53 m, y = 0, z = 0.645 m, relative to the 

point of initiation of movement of the robot, with 
a radius equal to 0.3 m). In both tests, the robot 

moves forward carrying the load over the same 

period of time (1 sec).The simulation and 

experimental results associated with the optimum 
trajectory for both tests are presented in Fig. 4. 

 

 

 
Fig. 4. Optimal trajectories 

From the relationships of finding the dynamic load for a specific path, the results showed that the 
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value of the maximum dynamic load for a specific 

path in the linear path is 0.837 kg. While, for the 

second test, the maximum allowable load was 
found 0.51 kg in which the end effector should 

move in a circular path. In the current study, the 

optimal trajectory converged after (10) iterations 

for the first test (linear path), while after (8) 
iterations for the second test (circular path). Also 

the value of maximum dynamic load for optimum 

trajectory DLCC II  for both paths (linear and 
circular) is 1.52 kg and 0.901 kg, respectively. Fig. 

5 shows the ILP solution for the maximum 

dynamic load carrying capacity in each iterations. 
It is worth mentioning, in the above two cases, in 

the case of the given trajectory and the optimum 

trajectory, the maximum dynamic load was 

determined when imposing the three constraints )  
actuator torque, stability and jerk limits). In other 

words, the results showed that the value of the 

maximum dynamic load when imposing just the 

major actuators constraint is 1.233 kg and 0.814 
kg in the case of the given linear and circular path 

trajectory, respectively. But when imposing 

stability and jerk limits constraints together, 

experimentally the robot will not be able to 
implement the trajectory and carry the load to the 

final point because it overturned and did not 

maintain its stability. Therefore, it is important to 
add the stability and jerk limits constraints to 

calculate the maximum dynamic load, which gives 

an accurate and scientific impression of the ability 
of the robot to carry the maximum dynamic load. 

Therefore, the values of DLCC determined within 

the three constraints were adopted as initial values 

that were entered into the computational process 
of ILP method. 

 

 
Fig. 5. Optimal dynamic load carrying capacity 

 
The outcome of the comparison between the 

values of the maximum dynamic load for the linear 

and circular path showed that the values of DLCC 
increased by approximately 82% and 78%, 

respectively after applying the ILP approach, as 

shown in Figure 6. This indicates the effectiveness 
of this approach, especially since the amount of 

increase in the maximum load of the robot 

increased at an acceptable rate. Predicting the 

optimal path taken by the robotic arm has taken up 
a wide space in many researches and has 

implications for the reality of work in robotic 

applications, as it gives more accuracy in the 

implementation of robotic tasks and the speed of 
implementation of those tasks. However, the use 

of the presented algorithm in this study is coupled 

with the fulfillment of all the constraints imposed 
to find the maximum dynamic load. This was 

fulfilled in this study, where the above results were 

drawn in light of the imposed limitations (motor 

torques, stability criterion and jerk limitations), 
which will discuss successively. 
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Fig. 6. The values of DLCC 

 

Figures 7 and 8 show the optimal position and 

velocities for the first and second joint of the right 

arm of the bipedal robot for both linear and 
circular trajectory of the end-effector, 

respectively. As mentioned earlier, the algorithm 

presented can be used for different robot 
manipulators with any degree of freedom because 

of the possibility the solution of inverse 

kinematics is determined for the trajectory. 

Anyway, the results presented here are for the first 
and second joint of the end effector to clarify the 

activity of the algorithm. Both the first and second 

joint were assumed to have a value of initial 
velocity equal to zero. In general, in finding the 

optimum trajectories for maximum DLCC, the end 

of the second link should be restricted at the first 

to move along a given path. Due to the multiplicity 

of trajectories generated by this approach, angular 

positions, velocities and accelerations are 
determined by recognizing the trajectory. This, in 

fact, distinguishes the iterative method, where 

several attempts are made to determine the optimal 
path, and this is accompanied by sequential 

procedures that the algorithm presented here 

shows. It must be noted that the results show that 

the simulated angular positions and velocities are 
compatible to an acceptable extent with the 

experimental results. Some deviations may be 

noticed in the values due to the influences of the 
experimental test environment, as they often 

occur.  

 

 
Fig. 7. Optimal angular position for first and second joint of right arm (𝛉𝟏𝒂 and 𝛉𝟐𝒂) 
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Fig. 8. Optimal angular velocities for first and second joint of right arm (𝜽̇𝟏𝒂 and 𝜽̇𝟐𝒂) 

 

In the current work the constraints of stability and 
jerk were taken into account. The stability 

criterion is important and should be investigated to 

ensure that it is met. When the robot moves with 
the load along its path, it may be subject to 

overturning if the stability condition is not 

satisfied. The calculation of zero moment point 
(ZMP) depends entirely on values of angular 

positions as well as the angular velocities. Taking 

into account the mass of the links with a load, plus 

the mass of the end effector. Based on the above, 
since the iteration method (ILP) is based on the 

idea of changing trajectories and suggesting 

sequential trajectories to reach the optimal 
trajectory, this will inevitably be accompanied by 

continuous changes in angular positions and 
angular velocities as well as mass values of links, 

so the value of ZMP was calculated for the optimal 

linear and circular paths. The zero moment point 
ZMP trajectory illustrated in Figure 9. As shown 

in this Figure, the biped robot is within the 

conditions of stability, because the ZMP criterion 
is within the support polygon for all the positions 

for both linear and circular optimal trajectory. It 

can also be seen that there is a convergence of the 

ZMP trajectory with the upper bound in the case 
of the circular path, this is due to the sudden and 

continuous changes in angular positions and 

angular velocities of joints within the optimal 
trajectory. 

 

 
Fig. 9. ZMP trajectory 

Figure 10 show the jerk in first and second joint of arm of bipedal robot in the linear and circular 
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optimal trajectory. It can be seen from this figure 

all curves of (jerk-time) are not exceeded the upper 

and lower jerk bound. Thus, it can be said that the 
biped robot can move carrying the load with it 

within the optimal path without any violation of 

the jerk limits. As mentioned above, the 

importance of this limitation is clearly evident 

when using the iterative method  (ILP), because the 

sudden changes in the positions for the joints 
stimulate the occurrence of vibrations in the joints. 

This problem is very important during 

experimental applications and must be reduced it. 
 

 

 
Fig. 10. Jerk in the first and second joint of arm in optimal trajectories 

 

The optimal torques against torques bounds for the 
maximum allowable load for first and second 

joints of right arm can be seen in Figure 11.  
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Fig. 11. Optimal torque applied on joints 

 

The torque-time curves above show an initial 

linear behavior at the beginning of test time 
besides a non-linear behavior from the middle of 

the time to the end of time. This behavior refers to 

the rapid and abrupt changes that occur in angular 
positions and angular velocities during the optimal 
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trajectory. Besides the above, the gravity and the 

mass of the end-effector, as well as the vibrations 

that occur during the dynamic motion, have an 
impact on describing the behavior of the torque-

time curves experimentally. From the results of the 

optimal torque-time curve for the first joint of the 
arm linear path, it exhibited the highest value of 

optimal torque of (17.5 N.m) followed by the first 

and second joint of the arm circular path with 
(16.88 N.m). On the other hand, it is very clear that 

both behaviors of torque-time curves for 

simulation and experimental tests are near to each 

other. Anyway, the value of the maximum 
dynamic load based mainly on the values of the 

torques, while the torques depend on the 

trajectories that the load moves with different 
positions and velocities until the best path is 

reached. From an applied point of view, the 

optimal path for the load is chosen depending on 
the design of the robotic arm and its principle of 

operation, as well as the energy consumption rates 

in the actuators of the joints, which should be as 

low as possible. Also, we do not condone the 
limitations of stability and jerk, the high stability 

during the dynamic motion, in addition to the 

lowest limits of a jerk, which would give the best 
dynamic performance of the robotic system. 

 

6. Conclusions 
The maximum optimal DLCC is the maximum 

allowable load that can be carried by the robot in 

an optimal trajectory to implement tasks. It is 
obvious that manipulation of a load is one of the 

most momentous tasks of robots and has a myriad 

of applications in actuality. The main reason that 
led to the conduct of the current study, is that the 

optimal DLCC describes the ability to repeatedly 

lift and carry the load in maximum value by the 
arm of the bipedal robot 10 DOF in optimal 

trajectory. The current study includes finding the 

optimum trajectory and the maximum DLCC in 

this trajectory using the iterative linear 
programming ILP method. The ILP method is very 

accurate, especially when calculating the dynamic 

load for complex and multiple degrees of freedom 
systems. The effectiveness of the presented 

method has been verified, simulations of the first 

and second joint of an arm of a bipedal robot were 
performed and all the obtained results were 

discussed in detail. The first test of the simulation 

involved a linear trajectory. The first position of 

the end effector at time = 0 is (0.23m, 0.345m) 
while the final position at time =1sec is (1m, 1m). 

The second test includes the movement of the end 

effector in a circular trajectory, also at time = 1 
sec. Where the circle centered (x = 0.53 m, y = 0, 

z = 0.645 m, relative to the point of initiation of 

movement of the robot, with a radius equal to 0.3 

m). In both tests, the robot moves forward carrying 
the load over the same period of time (1 sec). The 

optimal trajectory converged after (10) iterations 

for the first test (linear path), while after (8) 
iterations for the second test (circular path). The 

value of maximum dynamic load for optimal 

trajectory DLCC for both paths (linear and 
circular) is (1.52 kg) and (0.901 kg), respectively. 

An experimental test was performed to validate 

the results by using 10 DOF bipedal robot. Where 

all the results of the optimal trajectories, angular 
positions, and angular velocities were 

investigated, and it was found that there is a 

convergence between the results of the simulation 
and the experimental tests. Thus, the results 

showed that the technique presented in this study 

was implemented correctly and its reliability is 
high. It should be noted that all calculations were 

performed within constraints (actuators torque, 

stability conditions and jerk limits), where all 

constraints were fully met without violating any 
constraint. 
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Appendix (A) 
The torque in the first and second joint of the arm (end-effector) of bipedal robot:  

 

𝜏1𝑎 = (A1) Ɵ̈1𝑎 + (B1)  Ɵ̈2𝑎 +g1 ( Ɵ1𝑎,  Ɵ2𝑎  ,  Ɵ̇1𝑎, Ɵ̇2𝑎 , 𝑚𝑙)                                                            (A.1) 

𝜏2𝑎 = (A2)  Ɵ̈1𝑎 + (B2)  Ɵ̈2𝑎+g2 ( Ɵ1𝑎,  Ɵ1𝑎, Ɵ̇1𝑎 , Ɵ̇2𝑎,𝑚𝑙) 
 

Thus: 

 

[
 Ɵ̈1𝑎

 Ɵ̈2𝑎  
] =[

A1 B1

A2 B2
]
−1

[
C1

C2
] =[

𝑓1
𝑓2

]                                                                                                                (A.2) 

 

Where: 

 

C1= 𝜏1𝑎 −  g1           ,       C2= 𝜏2𝑎  – g2     ,     F = [
𝑓1
𝑓2

] 

1) 
𝜕𝑓

𝜕𝑥1
         { 

𝜕𝑓

𝜕 Ɵ1𝑎
, 

𝜕𝑓

𝜕 Ɵ2𝑎
} 

𝑓𝑞1𝑎
= [

𝜕𝑓1

𝜕 Ɵ1𝑎

𝜕𝑓2

𝜕 Ɵ1𝑎

]                                                                                                                                               (A.3) 

𝑓𝑞2𝑎
= [

𝜕𝑓1

𝜕 Ɵ2𝑎

𝜕𝑓2

𝜕 Ɵ2𝑎

]                                                                                                                                           (A.4) 
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2) 
𝜕𝑓

𝜕𝑥2
         { 

𝜕𝑓

𝜕Ɵ̇1𝑎
, 

𝜕𝑓

𝜕Ɵ̇2𝑎
} 

𝑓𝑞
.
1
=[

𝜕𝑓1

𝜕Ɵ̇1𝑎

𝜕𝑓2

𝜕Ɵ̇1𝑎

]                                                                                                                                                   (A.5) 

𝑓𝑞
.
2
=[

𝜕𝑓1

𝜕Ɵ̇2𝑎

𝜕𝑓2

𝜕Ɵ̇2𝑎

]                                                                                                                                                  (A.6) 

3)  
𝜕𝑓

𝜕𝜏
         { 

𝜕𝑓

𝜕𝜏1𝑎
, 

𝜕𝑓

𝜕𝜏2𝑎
} 

𝑓𝜏1𝑎
= [

𝜕𝑓1

𝜕𝜏1𝑎

 
𝜕𝑓2

𝜕𝜏1𝑎

]                                                                                                                                             (A. 7) 

𝑓𝜏2𝑎
= [

𝜕𝑓1

𝜕𝜏2𝑎

 
𝜕𝑓2

𝜕𝜏2𝑎

]                                                                                                                                             (A. 8) 

4) 
𝜕𝑓

𝜕𝑚
  {

𝜕𝑓1

𝜕𝑚
, 
𝜕𝑓2

𝜕𝑚
}            𝑓𝑚=[

𝜕𝑓1

𝜕𝑚

 
𝜕𝑓2

𝜕𝑚

]                                                                                                            (A.9) 

Expanding the nonlinear function in the Taylor series. With the need to remove the higher-order terms: 

 

𝑓1
𝑘+1(𝑗)= 𝑓𝑘  (j) +[

𝜕𝑓1

𝜕 Ɵ1𝑎

𝜕𝑓2

𝜕 Ɵ1𝑎

] (Ɵ1𝑎
𝑘+1 (j) − Ɵ1𝑎

𝑘 (j)) +[

𝜕𝑓1

𝜕Ɵ̇1𝑎

𝜕𝑓2

𝜕Ɵ̇1𝑎

](Ɵ̇1𝑎
𝑘+1

(j) - Ɵ̇1𝑎
𝑘

 (j) ) +[

𝜕𝑓1

𝜕𝜏1𝑎

 
𝜕𝑓2

𝜕𝜏1𝑎

](𝜏1𝑎
𝑘+1 (j) −𝜏1𝑎

𝑘  (j) ) + 

[

𝜕𝑓1

𝜕𝑚

 
𝜕𝑓2

𝜕𝑚

] (𝑚𝑙
𝑘+1 −𝑚𝑙

𝑘)                                                                                                                                   (A.10) 

 
The above Equation (A.10) for fist joint of the arm (end-effector) of bipedal robot, now for second joint: 

 

𝑓2
𝑘+1 (j) = 𝑓𝑘  (j) +[

𝜕𝑓1

𝜕 Ɵ2𝑎

𝜕𝑓2

𝜕 Ɵ2𝑎

] (Ɵ2𝑎
𝑘+1 (j) − Ɵ2𝑎

𝑘 (j)) +[

𝜕𝑓1

𝜕Ɵ̇2𝑎

𝜕𝑓2

𝜕Ɵ̇2𝑎

](Ɵ̇2𝑎
𝑘+1

 (j) − Ɵ̇2𝑎
𝑘

 (j) ) +[

𝜕𝑓1

𝜕𝜏2𝑎

 
𝜕𝑓2

𝜕𝜏2𝑎

](𝜏2𝑎
𝑘+1 (j) −𝜏2𝑎

𝑘  (j) ) + 

[

𝜕𝑓1

𝜕𝑚

 
𝜕𝑓2

𝜕𝑚

] (𝑚𝑙
𝑘+1 −𝑚𝑙

𝑘)                                                                                                                                   (A.11) 

 
By combining terms and rewriting the linearized Equations (A.10 and A.11) more compactly as Equations 

(A.12 and A.13) below:  

 

𝑓1
𝑘+1(𝑗)= [

𝜕𝑓1

𝜕 Ɵ1𝑎

𝜕𝑓2

𝜕 Ɵ1𝑎

]  (Ɵ1𝑎
𝑘+1  (j))+  [

𝜕𝑓1

𝜕Ɵ̇1𝑎

𝜕𝑓2

𝜕Ɵ̇1𝑎

]  ( Ɵ̇1𝑎
𝑘+1

 (j))+  [

𝜕𝑓1

𝜕𝜏1𝑎

 
𝜕𝑓2

𝜕𝜏1𝑎

]  (𝜏1𝑎
𝑘+1  (j)) + [

𝜕𝑓1

𝜕𝑚

 
𝜕𝑓2

𝜕𝑚

]  (𝑚𝑙
𝑘+1)  +𝑓𝑘  (j) −[

𝜕𝑓1

𝜕 Ɵ1𝑎

𝜕𝑓2

𝜕 Ɵ1𝑎

] 

(Ɵ1𝑎
𝑘 (j))− [

𝜕𝑓1

𝜕Ɵ̇1𝑎

𝜕𝑓2

𝜕Ɵ̇1𝑎

] Ɵ̇1𝑎
𝑘

 (j) )− [

𝜕𝑓1

𝜕𝜏1𝑎

 
𝜕𝑓2

𝜕𝜏1𝑎

] (𝜏1𝑎
𝑘  (j) )− [

𝜕𝑓1

𝜕𝑚

 
𝜕𝑓2

𝜕𝑚

] (𝑚𝑙
𝑘)                                                                 (A.12)  

f2
k+1  (j)= [

𝜕𝑓1

𝜕 Ɵ2𝑎

𝜕𝑓2

𝜕 Ɵ2𝑎

]  (Ɵ2𝑎
𝑘+1  (j))+  [

𝜕𝑓1

𝜕Ɵ̇2𝑎

𝜕𝑓2

𝜕Ɵ̇2𝑎

]  ( Ɵ̇2𝑎
𝑘+1

 (j))+  [

𝜕𝑓1

𝜕𝜏2𝑎

 
𝜕𝑓2

𝜕𝜏2𝑎

]  (𝜏2𝑎
𝑘+1  (j)) + [

𝜕𝑓1

𝜕𝑚

 
𝜕𝑓2

𝜕𝑚

]  (𝑚𝑙
𝑘+1)  +𝑓𝑘  (j) −[

𝜕𝑓1

𝜕 Ɵ2𝑎

𝜕𝑓2

𝜕 Ɵ2𝑎
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(Ɵ2𝑎
𝑘 (j))− [

𝜕𝑓1

𝜕Ɵ̇2𝑎

𝜕𝑓2

𝜕Ɵ̇2𝑎

] Ɵ̇2𝑎
𝑘

 (j) )− [

𝜕𝑓1

𝜕𝜏2𝑎

 
𝜕𝑓2

𝜕𝜏2𝑎

] (𝜏2𝑎
𝑘  (j) )− [

𝜕𝑓1

𝜕𝑚

 
𝜕𝑓2

𝜕𝑚

] (𝑚𝑙
𝑘)    

 

The above equations for the iteration (k +  l) 𝑡ℎ , it is possible to remove the superscript k+1. By substitution 

Equations (A.12 and A.13) into Eq. (13), thus lead to: 

 

Ɵ̇1𝑎(j+1)= p [

𝜕𝑓1

𝜕 Ɵ1𝑎

𝜕𝑓2

𝜕 Ɵ1𝑎

]  Ɵ1𝑎(j) +[ p [

𝜕𝑓1

𝜕Ɵ̇1𝑎

𝜕𝑓2

𝜕Ɵ̇1𝑎

] +[
1 0
0 1

]] Ɵ̇1𝑎(j)+[ p [

𝜕𝑓1

𝜕𝜏1𝑎

 
𝜕𝑓2

𝜕𝜏1𝑎

] ] 𝜏1𝑎(j)+ p [

𝜕𝑓1

𝜕𝑚

 
𝜕𝑓2

𝜕𝑚

] 𝑚𝑙 + p[  𝑓𝑘  (j) -                (A.13) 

 [

𝜕𝑓1

𝜕 Ɵ1𝑎

𝜕𝑓2

𝜕 Ɵ1𝑎

] Ɵ1𝑎
𝑘 (j) -[

𝜕𝑓1

𝜕Ɵ̇1𝑎

𝜕𝑓2

𝜕Ɵ̇1𝑎

] Ɵ̇1𝑎
𝑘
  (j) - [

𝜕𝑓1

𝜕𝜏1𝑎

 
𝜕𝑓2

𝜕𝜏1𝑎

] 𝜏1
𝑘 (j) -[

𝜕𝑓1

𝜕𝑚

 
𝜕𝑓2

𝜕𝑚

] (𝑚𝑙
𝑘)]                                                                  (A.14) 

Ɵ̇2𝑎 ((j+1)= p [

𝜕𝑓1

𝜕 Ɵ2𝑎

𝜕𝑓2

𝜕 Ɵ2𝑎

]  Ɵ2𝑎 (j) +[ p [

𝜕𝑓1

𝜕Ɵ̇2𝑎

𝜕𝑓2

𝜕Ɵ̇2𝑎

] +[
1 0
0 1

]] Ɵ̇2𝑎 (j)+[ p [

𝜕𝑓1

𝜕𝜏2𝑎

 
𝜕𝑓2

𝜕𝜏2𝑎

] ] 𝜏2𝑎 (j)+ p [

𝜕𝑓1

𝜕𝑚

 
𝜕𝑓2

𝜕𝑚

] 𝑚𝑙  + p[  𝑓𝑘  (j) - 

[

𝜕𝑓1

𝜕 Ɵ2𝑎

𝜕𝑓2

𝜕 Ɵ2𝑎

] Ɵ1𝑎
𝑘 (j) -[

𝜕𝑓1

𝜕Ɵ̇2𝑎

𝜕𝑓2

𝜕Ɵ̇2𝑎

] Ɵ̇2𝑎
𝑘

  (j) - [

𝜕𝑓1

𝜕𝜏2

 
𝜕𝑓2

𝜕𝜏2

] 𝜏1𝑎
𝑘  (j) -[

𝜕𝑓1

𝜕𝑚

 
𝜕𝑓2

𝜕𝑚

] (𝑚𝑙
𝑘)]                                                                  (A.15) 

 
And: 

 

 Ɵ1𝑎(j+1)=  Ɵ1𝑎(j) + p Ɵ̇1𝑎(j)                                                                                                                   (A.16) 

 Ɵ2𝑎(j+1)=  Ɵ2𝑎(j) + p Ɵ̇2𝑎(j)                                                                                                                   (A.17) 

 

Thus, the above Equations (A.15 to A.17) can be rearranged in matrix form as follows: 
 

X (j+1) = [𝐸𝑥]jX (j) + [𝐸𝜏]j 𝜏j+[𝐸𝑚]j  𝑚𝑙+𝐸j                                                                                           (A.18) 

 

Where: 

 

[Ex]j= 

[
 
 
 
 
 

1 0 𝜀 0
0 1 0 𝑝

𝑝
𝜕𝑓1

𝜕𝑞1𝑎
𝑝

𝜕𝑓1

𝜕𝑞2𝑎
𝑝

𝜕𝑓1

𝜕𝑞̇1𝑎
+ 1 𝑝

𝜕𝑓1

𝜕𝑞̇2𝑎

𝑝
𝜕𝑓2

𝜕𝑞1𝑎
𝑝

𝜕𝑓2

𝜕𝑞2𝑎
𝑝

𝜕𝑓2

𝜕𝑞̇1𝑎
𝑝

𝜕𝑓2

𝜕𝑞̇2𝑎
+ 1]

 
 
 
 
 

                                                                                    (A.19) 

[Eτ]j=

[
 
 
 
 

0 0
0 0

𝑝
𝜕𝑓1

𝜕𝜏1𝑎
𝑝

𝜕𝑓1

𝜕𝜏2𝑎

𝑝
𝜕𝑓2

𝜕𝜏1𝑎
𝑝

𝜕𝑓2

𝜕𝜏2𝑎]
 
 
 
 

                                                                                                                              (A.20) 

[𝐸𝑚]j =

[
 
 
 
 

0
0

𝜕𝑓1

𝜕 𝑚𝑙

𝜕𝑓2

𝜕 𝑚𝑙]
 
 
 
 

    (A.21)         ,           Ej = 

[
 
 
 

0
0

pX1
k

pX2
k]
 
 
 
                                                                                      (A.22)  

Where: 

𝑋1
𝑘= 𝑓𝑘  (j) −[

𝜕𝑓1

𝜕 Ɵ1𝑎

𝜕𝑓2

𝜕 Ɵ1𝑎

] (Ɵ1𝑎
𝑘 (j))− [

𝜕𝑓1

𝜕Ɵ̇1𝑎

𝜕𝑓2

𝜕Ɵ̇1𝑎

] Ɵ̇1𝑎
𝑘

 (j))− [

𝜕𝑓1

𝜕𝜏1𝑎

 
𝜕𝑓2

𝜕𝜏1𝑎

] (𝜏1𝑎
𝑘  (j))− [

𝜕𝑓1

𝜕𝑚

 
𝜕𝑓2

𝜕𝑚

] (𝑚𝑙
𝑘)   
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𝑋2
𝑘=𝑓𝑘  (j) −[

𝜕𝑓1

𝜕 Ɵ2𝑎

𝜕𝑓2

𝜕 Ɵ2𝑎

] (Ɵ2𝑎
𝑘 (j))− [

𝜕𝑓1

𝜕Ɵ̇2𝑎

𝜕𝑓2

𝜕Ɵ̇2𝑎

] Ɵ̇2𝑎
𝑘

 (j))− [

𝜕𝑓1

𝜕𝜏2𝑎

 
𝜕𝑓2

𝜕𝜏2𝑎

] (𝜏2𝑎
𝑘  (j))− [

𝜕𝑓1

𝜕𝑚

 
𝜕𝑓2

𝜕𝑚

] (𝑚𝑙
𝑘)                                  (A.23) 
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